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Abstract: A capacitive level sensor is used in the U-Tube Manometer to measure the level of the mercury in terms of 

capacitance. The sensor is used as part of an oscillator circuit which produces the sinusoidal signal. The abnormal data 

obtained from the system may cause noises and disturbances as well as affect the accuracy of calibration in the manometer. 

The Kalman filter and Extended Complex Kalman Filter (ECKF) algorithm are employed to suppress the abnormalities from 

minute capacitance change of measurements for promoting efficiency in frequency estimation and amplitude estimation of 

the distorted signal. 
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I. INTRODUCTION 
In a sinusoidal signal, frequency plays an important role  since it is generally used to indicate the system 

operation state. It can be used as a base for estimating other parameters such as amplitude and phase of the 

signal. Various estimation methods have been proposed such as Discrete Fourier transforms [1], Prony's 

Estimation [2], Least Square Error technique [3], adaptive notch filters and multiple frequency tracker [4], 

recursive Newton- type algorithm [5], Kalman filtering [6], a new variant of the extended Kalman filter [7]. In 

these methods, the higher order terms in the Taylor's expansion were neglected. Therefore, frequency estimation 

of distorted signals may occur incorrectly or take longer time to converge and even diverge.       

A complex form of state variables has been considered to be applied to the extended Kalman filter [8] for 

frequency estimation of corrupted signals with higher noises. However, in practice the real and imaginary 

signals cannot be obtained simultaneously. Therefore, the signal model has been modified and the output 

equation is rewritten to calculate the real signal.   

 

II. SIGNAL MODEL 
An observation signal yk at time tk be a sum zk of M sinusoids with white noise vk 

 

 𝑦𝑘 = 𝑧𝑘 +  𝑣𝑘             𝑘 = 1,2,3, … , 𝑁                  (1)    

 

 

where 

    𝑧𝑘 =   𝑎𝑛 sin 𝑤𝑛𝑡𝑘 + ∅𝑘 
𝑀
𝑛=1                                 (2)  

    𝑤𝑛 = 2𝜋𝑓𝑛                                                                 (3) 

    𝑡𝑘 = 𝑘𝑇𝑠 ,Ts is the sampling time                            (4) 

 

The signal in (2) can be simplified and represented as a complex type, i.e.,  

 

𝑧𝑘 =  𝑎1  sin 𝑘𝜔1𝑇𝑠 + ∅1   

=  −0.5𝑖  𝑎1𝑒
𝑗  𝑘𝑤1𝑇𝑠+∅1  +  0.5𝑖  𝑎1𝑒

−𝑗 𝑘𝜔1𝑇𝑠+∅1   

                                           (5) 

where  

ω1  fundamental of angular frequency 

ϕ1  fundamental of phase angle 

a1  fundamental amplitude of the signal 

 

The complex types of state variables are described to represent the state variable xk of a time varying single 

sinusoid signal. The measured value of the signal can be written as 

       

             State equation  : 𝑥𝑘 = 𝑓 𝑥𝑘−1                             (6) 
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Measurement equation : 𝑦𝑘 = ℎ 𝑥𝑘 + 𝑣𝑘                        (7) 

A. ECKF for frequency estimation 

 The ECKF is suitable for describing state variables. The ECKF is divided into state prediction and state 

filter. The former performs prediction processing with reference to the history data and latter is used to find the 

optimal estimate. 

 

State Prediction 

                                  𝑥 𝑘 = 𝑓 𝑥 𝑘−1                             (8) 

 

Predicted error covariance 

 

             𝑀𝑘 =  𝐹𝑘𝑃𝑘−1𝐹𝑘
∗𝑇 + 𝑄𝑘            (9) 

where 

             𝐹𝑘 =  
𝜕𝑓  𝑥 𝑘−1 

𝜕𝑥 𝑘−1
                           (10) 

In (8), the symbols ~ and ˆ stand for the predicted and estimated values, respectively. 

 

 

State filter 

  𝑥 𝑘 = 𝑥 𝑘 + 𝐾𝑘 𝑦𝑘 − 𝐻𝑥 𝑘                    (11) 

 Kalman gain Kk 

  𝐾𝑘 = 𝑀𝑘𝐻
∗𝑇[𝐻𝑀𝑘𝐻

∗𝑇]−1                  (12) 

The filtered error covariance Pk for updating the estimation is written as  

  𝑃𝑘 = 𝑀𝑘 1 − 𝐾𝑘𝐻                              (13) 

where 

𝑦𝑘 − 𝐻𝑥 𝑘          innovation vector 

 

III. METHODOLOGY 
The overall block diagram of the project is shown in the Fig. 1. When pressure is applied to one leg of the U-

Tube Manometer, there is change in level of mercury. To one leg of the manometer, capacitor plates are placed 

which measures the change in mercury level. The measured capacitance is given to the capacitance frequency 

converter. The capacitance to frequency converter converts the capacitance value into frequencies which are 

given to LabVIEW through DAQ. The counter  counts the frequencies change and stores the values. The output 

of the counter is given to the frequency estimator which estimates the frequency to calibrate the manometer 

 
Figure 1.  Block Diagram 

The mode selection sub.vi has two modes such as calibration mode and measurement mode. In the 

calibration mode, training is done for level and the corresponding frequency values from the counter sub.vi. The 

trained values are stored in MATLAB file. These trained values are used in the measurement mode and the level 

is obtained for the intermediate values. Finally the calculation is done to find the pressure of the corresponding 

level. 
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IV. FREQUENCY ESTIMATOR 
The frequency estimator is used to estimate the frequency of the signal. The algorithm used to estimate the 

frequency and amplitude are Kalman filter and ECKF. As the frequency varies for each level of mercury, it is 

been counted by the counter sub vi and stored. The stored frequencies are estimated using the frequency 

estimation techniques. 

A. Kalman Filter 

The Kalman Filter is a recursive prediction algorithm to remove high gain noise in a signal or system. 

Mathematically, the filter estimates the states of a linear system. The gain, noise covariance and prediction 

covariance are assumed initially. Using these values, the Kalman gain has been calculated and it predicts the 

estimated value to update the covariance's.     

B. ECKF 

The ECKF simultaneously estimates the complex sinusoidal signal and its frequency corrupted by white 

noise. The state space representation of the distorted sinusoidal signal has been modeled under the assumption 

that the number of sinusoids are known. The system is to be linearized to apply ECKF to generate a nonlinear 

recursive filter for estimating a single complex sinusoid and its frequency in white noise. Therefore, the Kalman 

gain Kk  and  the covariance matrix Pk depend on the estimate of state filter.   

 

V.   MATLAB AND LABVIEW SIMULATION 

A.  Matlab Simulink Model 

The process identification has been done to obtain the state transition matrix, the process noise covariance 

matrix and the  measurement matrix. These values are loaded into the Kalman filter block parameter to estimate 

the sine wave corrupted with Gaussian noise generator as shown in the Fig.2.   

 
Figure 2.  Kalman Filter 

The amplitude of the distorted signal has been reduced from 3 V to 2V. The faster tracking of frequency is 

limited to 40 Hz at the lower end and 60 Hz at the higher end. The output estimated measurement of the Kalman 

filter is shown in the Fig.3.  

 

 
 

Figure 3.  Output Estimated Measurement 

B. Change In Amplitude . 

 

The second case is one where there is a sudden change in amplitude. The simulation has been performed in 

LabVIEW where the amplitude can changed as per user's constraint. The output of the Kalman filter algorithm 

with change in amplitude is portrayed in Fig.4. During the change in amplitude, oscillations were exhibit in the 

frequency. 
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Figure  4.  Sudden change in amplitude 

C. Change In Frequency and Amplitude 

Since oscillations were present in the frequency as mentioned above, we consider ECKF algorithm to 

observe the frequency and amplitude estimation. The desired amplitude are set to 1 V and the frequency to 

0.5Hz. When the frequency and amplitude is varied randomly, there is a variation in the estimation. The 

amplitude was varied from 2V to 1V is shown in the Fig. 5 and the frequency was varied from 0.04 Hz to 0.08 

Hz.  

 

 
Figure 5.  Amplitude estimation using ECKF 

As the amplitude varies, there is a little oscillation in frequency and the tracking of the frequency is faster 

which settles at the desired frequency as depicted in Fig.6.  

 

 
 

Figure 6.  ECKF Frequency estimation 

 

VI. CONCLUSION 
 This Paper examines both the amplitude and frequency approximation of  the distorted signal using Kalman 

filter and ECKF algorithm. The hysteresis method are used to reset the covariance matrix, which enables fast 

tracking of frequency. The ECKF offers better performance with less number of oscillation when compared to 

Kalman filter algorithm. The computation of the filter is less which is more suitable for real time 

implementation. This approach is to found to be very stable and yields a significant frequency estimation 

accuracy of the order of 0.04 - 0.05 Hz in the presence of noise, less than 50 dB. The obtained results indicate 

that the algorithm works very well for step changes and decay or rise in the system. 
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